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We study the theory of scattering of two anyons in the presence of a quadratic saddle point potential and a
perpendicular magnetic field. The scattering problem decouples in the center-of-mass and the relative coordi-
nates. The scattering theory for the relative coordinate encodes the effects of anyon statistics in the two-particle
scattering. This is fully characterized by two energy-dependent scattering phase shifts. We develop a method to
solve this scattering problem numerically, using a generalized lowest Landau level approximation.
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One of the most remarkable features of the fractional
quantum Hall effect1,2 is the existence of quasiparticles with
fractional charge3 and fractional exchange statistics.4,5 Direct
evidence for the existence of fractional charge has been ob-
served experimentally.6–9 One way this has been achieved is
through the study of shot noise in a quantum Hall system
constricted by a point contact,7,8 by which the charge of the
current carriers may be derived from the fluctuations of the
current backscattered from the point contact.

Despite strong theoretical reasons to expect that these
fractionally charged quasiparticles also have fractional
statistics,4,5 to date there has been no unambiguous experi-
mental demonstration of fractional statistics. Several authors
have proposed methods in which evidence of fractional sta-
tistics might appear in transport experiments,10–14 based on
mesoscopic devices of various geometries. Here we adopt a
simple approach, and ask a very natural theoretical question:
can anyonic statistics influence the transport through a single
point contact? Clearly, since the effect of exchange statistics
is a two-particle property, any such effect requires more than
one particle to be present in the point-contact region. We
therefore study the scattering properties of a pair of anyons
incident on the point contact. Since the quantum Hall anyons
are charged, and experience a strong magnetic field, their
free motion is along edge states which follow classical equi-
potentials. The required scattering theory is therefore very
different from that of freely moving anyons, described by a
conventional kinetic energy.15 As we show, the anyonic na-
ture does affect the scattering of two quantum Hall quasipar-
ticles in the point-contact region. This effect can be charac-
terized by two energy-dependent phase shifts, which we
calculate numerically for general anyonic statistics param-
eter.

We consider two identical particles, with mass M and
charge q, subjected to a magnetic field B and in the presence
of a quadratic saddle point potential

H = �
i=1,2

1

2M
�pi − qA�ri��2 + U�yi

2 − xi
2� , �1�

where ��A=Bẑ is the uniform magnetic field. The particles
are taken to be anyons,16 with statistics parameter �. Thus,

the two-particle wave function has the boundary condition
that

��� + 2�� = e−i2������ , �2�

where �→�+2� represents one complete clockwise rotation
of the relative coordinate of the two particles. We note that
this defining feature applies either for distinguishable or in-
distinguishable anyons.17 If the anyons are indistinguishable,
one can impose the stronger restriction

��� + �� = e−i������ �indistinguishable� . �3�

Then, one recovers the exchange statistics for bosons and
fermions for �=0 and 1, respectively. For greater generality,
we study the case of distinguishable anyons. The effects of
the additional restriction for indistinguishability �3� will be
made clear in the discussion.

We simplify the problem, defined by Eq. �1� and the
boundary condition �2�, by introducing a “center-of-mass”
coordinate, rc, and a “relative” coordinate, rr, with

rc �
1
�2

�r1 + r2� rr �
1
�2

�r1 − r2� . �4�

The Hamiltonian separates, becoming

H� � �
�=c,r

1

2M
�p� − qA�r���2 + U�y�

2 − x�
2 � . �5�

Thus, the two-particle problem can be expressed as two in-
dependent one-particle problems, and the total energy E
=Ec+Er can be divided into separately conserved contribu-
tions from the center-of-mass and relative coordinates.

The center-of-mass coordinate rc is insensitive to anyonic
statistics. The scattering theory for this coordinate is identi-
cal to the one-particle problem solved by Fertig and
Halperin.18 This work allows one to deduce the transmission
and reflection coefficients of the center-of-mass coordinate
moving in the saddle point potential, in terms of Ec.

The relative coordinate rr has the same Hamiltonian.
However, since the wave function has the additional anyonic
boundary condition �2�, the results of Ref. 18 cannot be ap-
plied. The solution of the scattering problem for the relative
coordinate is the central result of the present paper. From
here on, for simplicity, we drop the subscripts r on rr and Er,

PHYSICAL REVIEW B 80, 165309 �2009�

1098-0121/2009/80�16�/165309�5� ©2009 The American Physical Society165309-1

http://dx.doi.org/10.1103/PhysRevB.80.165309


with the understanding that the calculation refers only to the
relative coordinate.

Before considering the scattering problem, we study first
the spectrum for the relative coordinate in the absence of a
potential, U=0. For �=0, this leads to the familiar Landau
level states and spectrum. The anyon boundary condition
changes the nature of these states. To describe the general-
ized Landau level states, we use polar coordinates, r
=r�sin � , cos �� and the symmetric gauge A=−e�rB /2. The
eigenstates are

	n,m�r,�� = e−i�m+���Rn,m�r� , �6�

where m is an integer, and n=0,1 ,2 , . . .. The normalized
radial wave functions are

Rn,m�r� = N1

�
� r

�
	
m+�


Ln

m+�
� r2

2�2	e−r2/4�2
, �7�

where ���
 / �qB� is the magnetic length, Ln
m are the

Laguerre polynomials, and the normalization is N
��n ! / ���
m+�
+n+1�2�2
m+�
�. The energy is

En,m = 
�c�n +
1

2

m + �
 −

1

2
�m + �� +

1

2
� , �8�

where �c�qB /M is the cyclotron frequency. The spectrum
has the required feature that it is invariant under the trans-
formation �→��=�−1, equivalent to the insertion of a flux
quantum at the origin. This amounts to the change m→m�
=m+1. Thus, it is sufficient to study the range 0��1 to
cover all possible cases. For positive m+��0 the energy
depends only on n: these sets of states thus form highly
degenerate Landau levels for the relative motion of the
anyons.

We now reintroduce the potential U�0. We do this within
a �generalized� lowest Landau level approximation, in which
U is taken only to lift the degeneracy of the lowest energy
states. This corresponds to retaining only those levels with
n=0 and m+��0. Noting that the lowest energy state lies
higher in energy by 
�c�1−��, the lowest Landau level ap-
proximation for the relative motion of the anyons is valid for
U�2�
�c�1−��. We denote the set of degenerate basis
states as 
j, where j=0,1 ,2 , . . ., and expand the wave func-
tion as 
	��	 j
j. The Schrödinger equation becomes

�	 j = ��j + � − 1��j + ��	 j−2 + ��j + � + 1��j + � + 2�	 j+2

�9�

for the amplitudes 	 j, where ��E / �U�2� is the dimension-
less measure of the energy. Note that there are no terms that
couple odd and even values of j. Physically, this arises from

the fact that the potential is invariant under spatial inversion
�x ,y�→ �−x ,−y�, and so the parity of the wave function is a
good quantum number. Thus the Schrödinger equation takes
the form of two decoupled sets of difference equations. We
write the general solution in terms of the “even” and “odd”
channels as


	e = �
p=0

�

	2p
e 
2p �10�


	o = �
p=0

�

	2p+1
o 
2p + 1 . �11�

For distinguishable anyons, the wave function can be a linear
superposition of these two solutions. However, for indistin-
guishable anyons, the boundary condition �3� requires that
only the even solution contributes.

We shall construct the wave function at large distances
from the origin, r��. In this limit, contributions are from
single-particle states with j�1. For j�� ,1, the Schrödinger
equation �9� has the wavelike solutions �normalized to unit
density per orbital j�19

	 j = ei�0j ��0 = � �/4, � 3�/4� . �12�

These solutions can be viewed as incoming and outgoing
waves in the discrete semi-infinite one-dimensional system
defined by the sites j=0,1 ,2 , . . .. To understand the nature of
these solutions, it is useful to construct their spatial wave
functions

�r
	 = �
j

ei�0je−i�j+���R0,j�r� . �13�

At large radius r, the wave function has significant amplitude
under the condition that ���0= �� /4, �3� /4. That is, the
wave function is peaked in these four angular directions.
These are the directions along which the zero-energy equi-
potentials of the electrostatic potential extend. Recalling that,
in the semiclassical approximation, the particle moves along
the equipotentials of the electrostatic potential, one sees
that the derived angles correspond to the two incoming
�−� /4,3� /4� and the two outgoing �� /4,−3� /4� channels
of the saddle point potential.

For a general scattering problem on a semi-infinite one-
dimensional system �e.g., waves on a string which is
clamped at one end�, at a fixed energy �frequency� one ex-
pects there to be only two wavelike solutions at large dis-
tances; these can be taken to be the incoming and the outgo-
ing waves. That, in the present case, there are four wavelike
solutions, is a special feature of the problem, which arises
from the fact that �as above� the Schrödinger equation �9�
conserves the parity. That is, the sites with j even and the
sites with j odd each behave as independent semi-infinite
one-dimensional systems. For each parity �even or odd� there
is one incoming mode and one outgoing mode. It is conve-
nient to re-express the four modes �Eq. �12�� in terms of
modes of definite parity. The explicit forms �normalized to
unit density per orbital j� are
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	 j
e/o,in =

1
�2

�e−i�/4j � ei3�/4j� �14�

	 j
e/o,out =

1
�2

�ei�/4j � e−i3�/4j� , �15�

which are readily verified to have the feature that 	 j
e �	 j

o� is
nonzero only for j=even �odd�. The “in” and “out” labels are
identified by the fact that the states have large amplitude on
the incoming ��=−� /4,3� /4� or outgoing ��=� /4,
−3� /4� channels of the saddle point potential.

For the semi-infinite one-dimensional scattering problem,
the asymptotic �large distance� incoming and outgoing waves
are coupled, with scattering from incoming to outgoing
waves occurring at small distances. In the problem of interest
here this scattering at small distances �small j� conserves
parity, so the incoming mode in the even �odd� channel can
scatter only to the outgoing mode in the even �odd� channel.
By conservation of particle flux, the scattering from incom-
ing to outgoing modes can amount only to a phase shift.
Hence, the �unnormalized� energy eigenstates are of the form

	 j
e/o � 	 j

e/o,in + ei�e/o���	 j
e/o,out �j � �,1� . �16�

Thus, the energy eigenstates are fully characterized by two
scattering phases: �e��� and �o��� which correspond to the
even- and odd-parity wave functions.

For indistinguishable anyons �Eq. �3�� only 	e is relevant.
There is only one incoming and one outgoing channel for the
relative coordinate, so the scattering is described only by a
single phase shift, �e���.

For distinguishable particles, both 	e and 	o can contrib-
ute. In this case, it is instructive to disentangle the above
transformation into states of definite parity, and to determine
the transmission probability. This is defined as the probabil-
ity for transmission from a state that is an incoming wave
along the definite angular direction ��−� /4, into a state
that is outgoing along ��+� /4. �These angles match the
convention chosen in Ref. 18.� The incoming wave �normal-
ized to unit density per orbital� is

e−i�/4j =
1
�2

�	 j
e,in + 	 j

o,in� , �17�

which is scattered into the state

1
�2

�ei�e
	 j

e,out + ei�o
	 j

o,out� . �18�

Noting that the transmitted wave is

e+i�/4j =
1
�2

�	 j
e,out + 	 j

o,out� �19�

and using the fact that 	e,out and 	o,out are orthogonal, one
sees that the transmission probability is

T = �1

2
�ei�e

+ ei�o
��2

=
1

2
�1 + cos��e��� − �o����� . �20�

We have determined the functions �e/o���—thereby solv-
ing the scattering problem for the relative coordinate—by a

numerical construction of the Green’s function of the dis-
crete Hamiltonian in Eq. �9�. We study an approximate ver-
sion of the full model, in which we treat j=0,N according to
the exact Hamiltonian �9�, but take the hopping matrix ele-
ments for j=N+1,� to be constant, and equal to
��N+�−1��N+��. The method becomes increasingly accu-
rate as N→�. Following standard techniques,20 the region
with j�N+1 can be replaced by a self-energy, and the
Green’s function for jN is

Ĝ��� = ��Î − Ĥ − �̂�−1, �21�

where the self-energy has matrix representation

�ij =
1

2
�i,N� j,N�� − i�4�N + � + 1��N + � + 2� − �2� .

�22�

The Green’s function for jN is then found by numerical
inversion of the finite matrix �for large finite N�.

Using the fact that, for a given element i, the Green’s
function Gi,j for j� i is an energy eigenfunction, we can use
this to compare to the wave function �Eq. �16�� in the
asymptotic regime j→�. Using Eq. �16�, the scattering
phase can be extracted from the ratios

	4p+2
e

	4p
e →

p→�

tan�− �e��� +
�

2
ln�4p�

2
� �23�

	4p+3
o

	4p+1
o →

p→�

tan�− �o��� − �/2 +
�

2
ln�4p�

2
� , �24�

where the logarithms on the right-hand side follow from the
corrections to the wave functions �12� described in Ref. 19.
In this way we can numerically construct the scattering
phases �e/o��� and from these the transmission probability T
�Eq. �20��. The numerical results converge rapidly with in-
creasing N, becoming independent of system size for N
�100. We show results for N=2000.

Figures 1 and 2 show our numerical results for the scat-
tering phase shifts for the even- and odd-parity channels,
respectively, as a function of energy for several values of �.
These two functions, over the range 0��1, fully describe
the scattering properties of the relative coordinate of quan-
tum Hall anyons in the lowest Landau level. The results
shown for �=1 correspond to the case �=1−, in which the
state m=−1 remains excluded from contribution to the low-
est Landau level. In this case, the spectrum is identical to that
for ��=0 and m�=m+1, but with the removal of the state at
m�=0. From Eq. �16�, and taking account of a � /2 phase
shift arising from the change m�=m+1, one expects
��=1−

e ���=���=0
o ���+� /2, which is indeed found to hold to

high accuracy in the numerical results.
In Fig. 3 we have used these results to determine the

transmission coefficient �Eq. �20��. For �=0, the results ac-
curately reproduce the exact analytical solution,18 showing
that our method is working correctly and is well converged.

SCATTERING THEORY FOR QUANTUM HALL ANYONS IN… PHYSICAL REVIEW B 80, 165309 �2009�

165309-3



For ��0, the results of Ref. 18 do not apply, and no analytic
solution is available. As compared to the case �=0, the
effect of increasing � is a broadening of the width in
energy over which the transmission coefficient rises from 0
���−1� to 1 ���1�. Thus, our results show that increasing
� leads to an increase in the tunneling rate through the
saddle point. Indeed, we find that, to a very good approxi-
mation, the results can be fitted by the function

T��� =
1

1 + exp�−
��

�
	 �25�

with the fit parameter � given approximately by �=1
+1.55378�+0.277179�2. �See the inset to Fig. 3.�

We note that our results apply for the case of two anyons
in a symmetrical saddle point potential �Eq. �1��. The more
general case can be considered by noting that Uyy

2−Uxx
2

= 1
2 �Uy +Ux��y2−x2�+ 1

2 �Uy −Ux�r2, leading to an additional
central �rotationally invariant� term�r2. This term modifies

the Schrödinger equation �9� and could lead to a change in
the phase shifts and transmission probabilities. In the same
way, central �rotationally invariant� anyon-anyon interactions
could be included within the same formalism. The solution
of these more general cases is beyond the scope of the
present paper, so the influence of these perturbations on the
scattering properties remains an open question.

In summary, we have provided a solution of the scattering
problem for two anyons in a quadratic saddle point potential
and perpendicular magnetic field, through separation into
center-of-mass and relative coordinates. The scattering
theory for the center-of-mass coordinate has previously been
solved analytically.18 The scattering for the relative coordi-
nate is characterized by two energy-dependent phase shifts
�for even and odd parities�. We have computed these phase
shifts within a lowest Landau level approximation. Our re-
sults provide a complete solution of the two-anyon scattering
problem. They show that the two-particle scattering proper-
ties in the vicinity of a point contact depend on the anyonic
statistics parameter. This shows that one can hope to obtain
experimental signatures of anyonic statistics in point-contact
devices. We believe that the approach and solution we have
described provide a useful basis on which to build further
theoretical studies of nonequilibrium properties of anyons—
under conditions of bias and/or “beam dilution21” where
multiple quasiparticles may enter the point-contact region.
Depending on the experimental setup, and the relevant ob-
servables, the two-particle scattering problem in the coordi-
nates r1 and r2 should be decomposed into relative and
center-of-mass coordinates for which the scattering proper-
ties follow the results presented.

N.R.C. acknowledges the support of EPSRC under Grant
No. GR/S61263/01.
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FIG. 1. �Color online� Results of numerical calculations of the
scattering phase shift for the relative motion of two anyons in the
even-parity channel, �e���, as a function of dimensionless energy
�=E /U�2 at several values of the anyonic statistics parameter �.
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FIG. 2. �Color online� Same as Fig. 1, but for the odd-parity
channel, �o���.
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FIG. 3. �Color online� Transmission probability T for the rela-
tive coordinate of two quantum Hall anyons, as a function of the
scaled energy ��Er / �U�2�. The points are results of numerical cal-
culations for several values of the anyon statistics parameter �. The
lines are fits, using the function �25� with parameter � chosen as
shown in the inset. For �=0 choosing �=1 gives the exact analytic
result �Ref. 18�; in this case, the comparison with numerical results
illustrates the accuracy of our numerical approach at this system
size �N=2000�.
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